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Analysis of a Transmission. Cavity Wavemeter*

LEO YOUNG?,

Summary—A section of transmission line partially closed off at
each end constitutes a cavity wavemeter. If fixed in length, it may
be used as a reference cavity; or if tunable, it maybe used to deter-

mine frequency. Such a cavity is here treated systematically as a

10SSY transmission line, with the two end couplings either lossless or
symmetrical. The analysis is by means of the transfer or wave

matrix. Various expressions are derived which have previously not

been obtained, or for which only approximate expressions have been

derived from “equivalent circuits.”

1. lNTRODLTCTION

A “transmission wavemeter” is a waverneter which

normally reflects most of the power incident on

the generator side. It transmits appreciable

power from the generator to the load only over a narrow

frequency band. The load is often a crystal detector

which peaks sharply as the wavemeter or generator is

tuned through resonance. This transmission line circuit

may be represented as shown in Fig. 1, where

al, a2, az’, and at are wave amplitudes in the di-

rection from generator to load (left to right in Fig. 1)

at the reference planes shown,

bl, ba, bs’, and b~ are wave amplitudes in the reverse

direction (right to left in Fig. 1) at the same reference

planes, and

rL=5 (1)
a3

is the reflection coefficient of the load as measured at

the last reference plane.

The wave amplitudes a and b will be defined in terms

of power flowl by

I a [2 = power flow in the forward direction

(i.e. towards the load),

I b ]2 = power flow in the reverse direction

(i.e. back towards the generator). (2)

The cavity is supposed to be coupled to the outside

by two identical couplings (holes or irises, etc.), one at

each end of the cavity (Fig. 1). We shall also take each

coupling in itself as either lossless or symmetrical (and

possibly lossy), since this simplifies the analysis, and the

general case of unsymmetrical lossy couplings is not

commonly found. No further restriction is placed on the

kind of coupling (e.g. iris thickness, etc.).
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Fig. l—Transmission wavemeter cavity.

The electrical length of the cavity, 0 radians, is

measured between the two reference planes inside the

;avity, and is defined by

27x cavity length (between inside reference planes)
?= . (3)

guide wavelength, A,

The treatment presented here is exact to the extent

:hat a) higher-order modes maybe neglected, and b) the

rariable quantity in the definition of 0 is cavity length

-ather than guide wavelength (cavity tuned at fixed

‘requency), since the coupling parameters at each end

]f the cavity will generally be frequency sensitive and

jo vary with guide wavelength. Under certain conditions

t is not necessary to stipulate b), and O can be taken as

i frequency variable (fixed cavity and tunable signal

~enerator). This occurs for instance when the couplings

ire ideal transformers, 2 which can be realized closely in

?ractice with E-plane waveguide steps.

l?esonance

In a simple series L- C-R circuit driven by a constant

roltage generator, the current in the circuit, the voltage

>cross L, the charge on C, etc., reach maximum or

‘Resonance” at slightly different frequencies. The

‘(resonant frequency” is usually understood to be the

~requency for current resonance, and is independent of

the resistance R.

With a cavity too, the reflected wave, the transmitted

wave, and the internal fields reach maximum or reso-

nance at slightly different values of 0. However, Q is gen-

wally large; it is usually several thousand in microwave

wavemeters, so that to speak of a resonant length or

frequency is in general substantially correct.

Of all the resonant lengths, the most convenient one

is perhaps that length which gives amplitude resonance,

‘ L. Young, “Design of Microwave Stepped Transformers with
applications to Filters, ” Ph. D. dissertation, The Johns Hopkins
University, Baltimore, Md.; 1959.
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that is, maximum wave amplitudes inside the cavity.

There are two reasons for this choice. The first is that it

is applicable to every cavity wavemeter, regardless of

external connections. The second reason is that the

pole, which determines the maximum internal cavity

fields, also occurs as a pole in the expressions for the

reflected and transmitted amplitudes, as will be seen

later.

Now &/a3 is the reflection coefficient I’~ of the load in

the reference plane of the cavity, on the load side:

a3

Eq. (8) represents two simultaneous equations. Sub-

stituting (1) and eliminating bl, yields

a3 T’
——

al D1
(9)II. ANALYSIS BY TRANSFER MATRICES

Consider a wavemeter symmetrically coupled as

shown in Fig. 1 by two separate couplings, into a wave

generator on the left and into a load on the right. (The

generator and load are only coupled via the cavity.)

The wave or transfer matrixl–e will be used. The

cavity length 19is introduced by the line transfer matrix

@, given by

where

Dividing the two simultaneous equations (8), substi-

tuting (1), and solving for bl/al yields

bl r(l–r~r)eJ8+ (T2–r2){ r+r~(T’--lr2)}JOJ0
—. — . (11)
al DI(4)

From (11) and fromwhere

(5) (3=‘-’o
.4 being the attenuation of the cavity transmission

it follows that

az T(1 – rLr)eJO
— —

al DI

line in nepers per guide wavelength. (For a wavemeter

with no internal losses, A = O, and then J reduces to
(12)j=<<.)

Since each coupling hole has been taken to be either

lossless or symmetrical (and possibly lossy), the two

reference planes associated with each coupling may be

chosen so that the reflection coefficient r of a single

coupling hole is the same from either side (in amplitude

as well as phase), and its transmission coefficient T is

the same in both directions. Then the transfer matrix

of a single coupling hole may be written5

III. ANALYSIS FOR LOSSLESS COUPLINGS

From here to the end of the paper it will be supposed

that the couplings themselves introduce no loss. Then

from energy considerations(6)

lrl’+\TI’ =1. (14)

From Fig. 1,
The reference planes of the lossless coupling hole may

be chosen (without loss in generality) so that I’ is real;

then it can be shownz’5 that T must be imaginary, and

therefore (14) becomes

r~– T2=l. (15)

(7)

In full,

Eqs. (10) to (13) then reduce to

(8)
a3 T2e–J8

—.

al D~
(16)

bl r(l — rLr) – (r – ri)e-z~d
—7 (17)

al Dz
3 G. L. Ragau, “Microwave Transmission Circuits, ” h~ass. Inst.
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N. Y., vol. 9, pp. 551-554; 1948.

4 C. G. Montgomery, R. H. Dicke and E. hI. Purcell, “Principles
of Microwave Circuits, ” Mass. Inst. Tech. Rad. Lab. Ser., McGraw-
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6 L. Young, “An Analysis of Resonant Cavities by Matrix Meth-
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ag T(1 – rLr)
. (18)

al D, “

b, T(r – rL)e–2”7d
— (19)’

al Dz

195s.
“Branch guide directional couplers, ” Proc. Natl.
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where

D? = (1 – rLr) – r(r – rL)e–2Jo.

Rejlcctionless Load

If further I’~ = O (for a reflectionless load), then

a? _ pe–2Ja

—

al D, ‘

bl r(l – e–u9
— .

al D,

az T
—— —

al z’

b~ Tre–2J9
——

where

al L-J&

D, = 1 – I“e-2J0.

[

r(r – rL)
80 = ~ arg —— _.e-A8/T 1 (Z8)

(lOb) 1 – rLr

1

[

r(r – rL)
—. — arg e–nA

2 1I–rLr” ‘
(29)

if it is not too far from the resonant value 6 = n~.

(20) NTote that if both I’ and I’~ are real in the same refer-

ence plane, there will be no pulling.

(21) Maximum Transmitted .4 rnplitude

The maximum values of the internal and transmitted

(22) waves are obtained when 9 = nr is substituted in (20),

(22), and (23), if the load is reflectionless, or O from

(29), if it is not, into (16), (18), and (19).

(23) ViTe thus obtain for a reflectionless load (I’. = O),

(1OC)

as _ \T12 I–lrl’
—

al ~~x 1– Irl’m’=l– Irlzmz

Poles and Zeros
where

The response functions (9) to (13) have the same pole
M2 ~ e-Ao/7r,

in the complex @plane, given by while if the load is not reflectionless

r[r + rL(T’ – r’)]
e2J8 = (24)

l-l

a3 l–lrl’

I–rLr “
—

a I ~~x ll–r.rl -lr(r-r.)1~’

In the special case of lossless coupling (r= real, with Eq. (3o) can be written in terms of Q. Define

T= imaginary), reflectionless load (1’~ = O), and zero
A“

cavity waveguide attenuation (A = O), the resonant s=—

length is A

00= n7r, (n = integer), (25)

when it is measured between reference planes defined by

I’ =real. The multiplier n will be called the Harmonic

Number. If the losses are small, n is still nearly integral.

Then

/2? = [?2]+ .5, (26)

where [n] is integral and e is small. In this case [~z] will

be called the Harmonic Number.

The only zero occurs in the expressions for the re-

flected wave b,/a,. It is given by

(30)

(31)

(32)

(33)

where hg = guide wavelength, and A = free space wave-

length. The quantity s’ often occurs in the theory of

dispersive transmission lines4-G and will be called the

“dispersion factor. ”

It can be shown7 that Q is given very closely by

1 _ e–A8/T~-=”.
A 1 – I r 12e–-46/~ “

Since

(34)

(35)

e,Jo = (T’ – r’){r + rL(T’ – r’)} therefore
(27)

r(l – r.r)

IH

a3 I T12Q<—
This zero will generally be close to the pole. If the cavity

—.

al ~.. ?lTSZ (36)

line attenuation A = O, the transmitted wave and fields Resonance .~mplification

inside the cavity reach maximum or minimum values

together; the reflected wave will do so in general at a
If 17~ is not zero, the maximum amplitude inside the

slightly different 6. This value maybe found graphically
cavity is given by G I T/ , where G is the ‘[resonance am-

by plotting the locus of the vector bl/aI for various O P1ificatiOll~”

near resonance.

G\Tl #
laz~+lb,l

Resonant Length or Frequency Pulling I a~\— m%x

by a Mismatched Load _lT~{\l -rLrl+lr-rLl m’}, (37)

Eqs. (24) and (25) establish the resonant length pull- 11–r.rl – Ir(r–r.)mz

ing due to a mismatched load when the cavity coupling 7 L. Young, “Q-factors of a transmission line cavity, ” IRE TRANS.
is Iossless. Then 19has to be increased by ON CIRCUIT THEORY, vol. CT-4, pp. 3–5; March, 1957.
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while if 17L = O, this reduces to

\a,l+lb,l lTl(l+lrl@

Id Irlax=1- Irl’~z “ ’38)
For the rest of this discussion consider only the case

of a reflectionless load, r~ = O.

Since lrl’+landm’+1,

Thus the resonance amplification G is approximately

(40)

In series (or shunt) L- C-R circuits the voltage (or

current) resonance amplification is Q. The resonance

amplification G here defined is proportional to Q, but if

expressed in terms of Q, is also inversely proportional

to the harmonic number n, and the dispersion fac-

tors S2.

Bandwidth

The cavity bandwidth can be obtained from (20) or

(22), when 17L = O. The bandwidth is defined in the

usual way by W= 2Aj, where + Aj is the deviation from

the resonant frequency, which reduces

l-l

a2 as 1
or—to= of their maximum values.

al al 42

Now

df=–j; =–++ (41)
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where ~ AO is the deviation of O from its resonant value

00= nx-, which reduces \ a.Jal I and I a,/’al I to l/<~ of

their maximum values.

For high Q this will be given approximately by

1 – I I’lzw’ : 2A0. (43)

Hence by (35),

?Ln’s2
2AQ : — (44)

Q“
Therefore

(45)

This result is not surprising since it is the familiar ex-

pression for a series or shunt L- C-R circuit, except that

there it is exact (whereas for a transmission line cavity

it is only a good approximation for high (j).

IV. CONCLCTSION

An analysis of a transmission wavemeter has been

presented which, given a single-mode in each section of

transmission line, is exact. This treatment is based on

the transfer matrix, and does not require the use of

equivalent L- C-R circuits. 8
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