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Analysis of a Transmission Cavity Wavemeter”

LEO YOUNGTY, FELLOW, IRE

Summary—A section of transmission line partially closed off at
each end constitutes a cavity wavemeter. If fixed in length, it may
be used as a reference cavity; or if tunable, it may be used to deter-
mine frequency. Such a cavity is here treated systematically as a
lossy transmission line, with the two end couplings either lossless or
symmetrical. The analysis is by means of the transfer or wave
matrix. Various expressions are derived which have previously not
been obtained, or for which only approximate expressions have been
derived from ‘‘equivalent circuits.”

I. INTRODUCTION

“transmission wavemeter” is a wavemeter which
A normally reflects most of the power incident on

the generator side. It transmits appreciable
power from the generator to the load only over a narrow
frequency band. The load is often a crystal detector
which peaks sharply as the wavemeter or generator is
tuned through resonance. This transmission line circuit
may be represented as shown in Fig. 1, where

a1, @2, @', and a3 are wave amplitudes in the di-
rection from generator to load (left to right in Fig. 1)
at the reference planes shown,

b1, be, by’, and b; are wave amplitudes in the reverse
direction (right to left in Fig. 1) at the same reference
planes, and

bs
Tp=— (1)
asg
is the reflection coefficient of the load as measured at
the last reference plane.

The wave amplitudes ¢ and b will be defined in terms
of power flow' by

| ¢|2 = power flow in the forward direction
(i.e. towards the load),
| 5|2 = power flow in the reverse direction

(.e. back towards the generator). (2)

The cavity is supposed to be coupled to the outside
by two identical couplings (holes or irises, etc.), one at
each end of the cavity (Fig. 1). We shall also take each
coupling in itself as either lossless or symmetrical (and
possibly lossy), since this simplifies the analysis, and the
general case of unsymmetrical lossy couplings is not
commonly found. No further restriction is placed on the
kind of coupling (e.g. iris thickness, etc.).
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Fig. 1—Transmission wavemeter cavity.

The electrical length of the cavity, 6 radians, is
measured between the two reference planes inside the
cavity, and is defined by

27 X cavity length (between inside reference planes) 3
guide wavelength, A, @
The treatment presented here is exact to the extent
that a) higher-order modes may be neglected, and b) the
variable quantity in the definition of 8 is cavity length
rather than guide wavelength (cavity tuned at fixed
frequency), since the coupling parameters at each end
of the cavity will generally be frequency sensitive and
so vary with guide wavelength. Under certain conditions
it is not necessary to stipulate b), and 6 can be taken as
a frequency variable (fixed cavity and tunable signal
generator). This occurs for instance when the couplings
are ideal transformers,? which can be realized closely in
practice with E-plane waveguide steps.

Resonance

In a simple series L-C-R circuit driven by a constant
voltage generator, the current in the circuit, the voltage
across L, the charge on C, etc., reach maximum or
“resonance” at slightly different frequencies. The
“resonant frequency” is usually understood to be the
frequency for current resonance, and is independent of
the resistance R.

With a cavity too, the reflected wave, the transmitted
wave, and the internal fields reach maximum or reso-
nance at slightly different values of 8. However, Q is gen-
erally large; it is usually several thousand in microwave
wavemeters, so that to speak of a resonant length or
frequency is in general substantially correct.

Of all the resonant lengths, the most convenient one
is perhaps that length which gives amplitude resonance,

2 L. Young, “Design of Microwave Stepped Transformers with
Applications to Filters,” Ph.D. dissertation, The Johns Hopkins
University, Baltimore, Md.; 1959.
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that is, maximum wave amplitudes inside the cavity.
There are two reasons for this choice. The first is that it
is applicable to every cavity wavemeter, regardless of
external connections. The second reason is that the
pole, which determines the maximum internal cavity
fields, also occurs as a pole in the expressions for the
reflected and transmitted amplitudes, as will be seen
later.

IT. ANaLyYsIsS BY TRANSFER MATRICES

Consider a wavemeter symmetrically coupled as
shown in Fig. 1 by two separate couplings, into a wave
generator on the left and into a load on the right. (The
generator and load are only coupled via the cavity.)

The wave or transfer matrix'% will be used. The
cavity length @ is introduced by the line transfer matrix

0, given by
e’ 0
(5 @

A
J=j+—) (5)
2

where

o

A being the attenuation of the cavity transmission
line in nepers per guide wavelength. (For a wavemeter
with no internal losses, A =0, and then J reduces to
ji=v—1)

Since each coupling hole has been taken to be either
lossless or symmetrical (and possibly lossy), the two
reference planes associated with each coupling may be
chosen so that the reflection coefhicient I' of a single
coupling hole is the same from either side (in amplitude
as well as phase), and its transmission coefficient 7 is
the same in both directions. Then the transfer matrix
of a single coupling hole may be written®

0T
Qorer() o

(AT S G [P
T2 —T2 T\ /a1
(0 )6 ®
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Now bs/as is the reflection coefficient I'z of the load in
the reference plane of the cavity, on the load side:

bs
I'p=—-_ (1)

as

Eq. (8) represents two simultaneous equations. Sub-
stituting (1) and eliminating b, yields

as ]‘2
S (9
a1 Dl .
where
Di=(1—T.T)e/? — T{I 4 T'(T? — TH}e70. (10a)

Dividing the two simultaneous equations (8), substi-
tuting (1), and solving for b1/a; yields

by T(1—=T )¢/ (T2 =T { T+ T (T2~ T2} e

i1
o D (11)
From (11) and from
()=
= T-1 ,
bs by
it follows that
T(1 — T:T)e?
~(1—2 _ ( ) (12)
ai Dl
and
by TIT 4 To(I?— T2} e
b T + I'z( ) ' (13)

ay Dl

I11. ANnaLysIs FOR LossLEsSs COUPLINGS

From here to the end of the paper it will be supposed
that the couplings themselves introduce no loss. Then
from energy considerations

TP+ 7=t (14)

The reference planes of the lossless coupling hole may
be chosen (without loss in generality) so that I' is real;
then it can be shown?? that 7" must be imaginary, and
therefore (14) becomes

re— T =1, (15)
Egs. (10) to (13) then reduce to
TZ —dJ 0
Lot (16)
a1 Dg
Tl — T — (T — Typ)e2/?
b ( ) — ( L)e ; (a7
a1 Dg
9 771 — T'.
o T - LD (18)
a4 Dg
by T(T — Tp)e®*
be T = Tu)e (19)
ai D?



438

where
D, = (1 - PLF) - P(P - I‘L)C_Q‘m. (10b)
Reflectionless Load
If further I', =0 (for a reflectionless load), then
a T?e-"ZJﬂ
RENE L (20)
a1 D3
b (1 — %7
b _Td=e*) (21)
a4 D%
[12)) T
- = ’ (22)
ai Dg
bg TTe 270
_—= (23)
a1 Dg
where
Dy =1 — I'?e%°, (10¢)

Poles and Zeros

The response functions (9) to (13) have the same pole
in the complex @ plane, given by

_ T[r 41y (72 - 1))
B 1— T,T

270

(29

In the special case of lossless coupling (I'=real, with
T =imaginary), reflectionless load (I';=0), and zero
cavity waveguide attenuation (4 =0), the resonant
length is

6o = nm, (n = integer), (25)

when it is measured between reference planes defined by
I'=real. The multiplier #» will be called the Harmonic

Number. If the losses are small, # is still nearly integral.

Then
n=|n]+e¢ (26)

where [#] is integral and e is small. In this case [2] will
be called the Harmonic Number.
The only zero occurs in the expressions for the re-
flected wave b1/a:. It is given by
(T2 — I){T + T7(T2 — T}
(1 — I'.T)

020 =

: (27)

This zero will generally be close to the pole. If the cavity
line attenuation 4 =0, the transmitted wave and fields
inside the cavity reach maximum or minimum values
together; the reflected wave will do so in general at a
slightly different 0. This value may be found graphically
by plotting the locus of the vector b;/a; for various 6
near resonarnce.

Resonant Length or Frequency Pulling
by a Mismaiched Load

Eqs. (24) and (25) establish the resonant length pull-
ing due to a mismatched load when the cavity coupling
is lossless. Then 8 has to be increased by
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1 (I — I'z) :
00 = — arg| — — g AlT 28
2 g[ 1—-71,.T (28)
1 (T — Ty :]
= —arg| ————— ¢4 || 29
2 gl: 1—-T;T (29)

if it is not too far from the resonant value 8 =#n.
Note that if both T" and I'; are real in the same refer-
ence plane, there will be no pulling.

Maximum Transmitted Amplitude

The maximum values of the internal and transmitted
waves are obtained when 6 =ur is substituted in (20),
(22), and (23), if the load is reflectionless, or 8 from
(29), if it is not, into (16), (18), and (19).

We thus obtain for a reflectionless load (I'; =0),

o |72 1— ||
— = = (30)
Q11 max 1 — ‘ P|2m2 1 - [ P|2’l’ﬂ2
where
m? = g~4biT, (31)
while if the load is not reflectionless
as 1 — l T2
— = - (32)
@1 max |1_FLP|—‘P(P_PL)|WL2
Eq. (30) can be written in terms of Q. Define
Ay
§ = — 33
N (33)

where A, =guide wavelength, and A={ree space wave-
length. The quantity s? often occurs in the theory of
dispersive transmission lines*® and will be called the
“dispersion factor.”

It can be shown? that Q is given very closely by

ws? 1 — g4éir

S —— 34
C=gC | T |2eteim (34
Since
nws?
1— [T ——, (35)
Q
therefore
as| | T|Q
01l max  wms® (36)

Resonance Amplification

If I'y is not zero, the maximum amplitude inside the
cavity is given by GI TI , where G is the “resonance am-
plification,”

s | b
G!Tl .:.Iazu_l“[ 2|

| a1 l max

_lriii—rer[ [T —Tofm} 37
|1 — T — [T = Tom?

7 L. Young, “Q-factors of a transmission line cavity,” IRE TRANS,
o~ Circurr THEORY, vol. CT-4, pp. 3-5; March, 1957.
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while if I';, =0, this reduces to

| as| + | b __|T|(1—|—|1‘|m2).
B 1——[I‘|2m2

(38)

‘ a I max

For the rest of this discussion consider only the case
of a reflectionless load, 'z =0.
Since |T'|2=1and m?=1,

GIT,='!a2l+‘b2| = ZNT}
) | a1 max 1 — | T|2m?
20| T
= Q|2;> (39)
nws

Thus the resonance amplification G is approximately

20

nws

G = S (40)

In series (or shunt) L-C-R circuits the voltage (or
current) resonance amplification is . The resonance
amplification G here defined is proportional to @, but if
expressed in terms of Q, is also inversely proportional
to the harmonic number #, and the dispersion fac-
tors s2.

Bandwidith

The cavity bandwidth can be obtained from (20) or
(22), when T'p=0. The bandwidth is defined in the
usual way by W =24/, where +Af is the deviation from
the resonant frequency, which reduces

a2 a3 . .
-—| or l— to ~—= of their maximum values.
ai a1
Now
ax da
df=_f_:__f__ﬁ. (41)
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Hence

2 A9 2, Af

T T

s B s uw

W = 24f = (42)
where 4-A# is the deviation of § from its resonant vglue
6o =mnm, which reduces 1a2/a1[ and |a;;/a1| to 1/4/2 of
their maximum values.

For high Q this will be given approximately by

1— | T|2m? = 240. (43)
Hence by (35),
nws?
2AQ = (44)
Therefore
. Jo
Wes—-: (45)
Q

This result is not surprising since it is the familiar ex-
pression for a series or shunt L-C-R circuit, except that
there it is exact (whereas for a transmission line cavity
it is only a good approximation for high Q).

IV. CoNcLusION

An analysis of a transmission wavemeter has been
presented which, given a single-mode in each section of
transmission line, is exact. This treatment is based on
the transfer matrix, and does not require the use of
equivalent L-C-R circuits.®
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